矿石收音机论坛

 找回密码
 加入会员

QQ登录

只需一步,快速开始

搜索
查看: 17987|回复: 12

如何自建LTspice 模型

[复制链接]
     
发表于 2011-7-29 18:32:34 | |阅读模式
http://ecee.colorado.edu/~bart/book/book/chapter5/ch5_6.htm

SPICE BJT Parameters
----------------------------------
BF Forward active current gain

BR Reverse active current gain

IS Transport saturation current

CJE Base-emitter zero-bias junction capacitance

CJC Base-collector zero-bias Junction capacitance

VJE Base-emitter built-in potential

VJC Base-collector built-in potential

VAF Forward mode Early voltage

VAR Reverse mode Early voltage

NF Forward mode ideality factor

NR Reverse mode ideality factor



http://www.electronicspoint.com/ ... -models-t73122.html

"ierreJ" <(E-Mail Removed)> wrote in message
newsE-Mail Removed) ps.com...
> Some people here kindly helped with a silly question. I have perhaps
> another.
>
> Trying to understand spice models to make a new model for ltspice. Not
> understand so looked at existiing ones. Spice model to Fairchild
> datasheet for 2N3904 is
>
> NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734
> Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085
> Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2p Itf=.4
> Vtf=4 Xtf=2 Rb=10)
>
> Spice model to ltspice for same transistor is
>
> NPN(IS=1E-14 VAF=100 Bf=300 IKF=0.4 XTB=1.5 BR=4 CJC=4E-12 CJE=8E-12
> RB=20 RC=0.1 RE=0.1 TR=250E-9 TF=350E-12 ITF=1 VTF=2 XTF=3 Vceo=40
> Icrating=200m mfg=Philips)
>
> Some parameters are not in both. Even ones that are in both are
> different in each one. Not understand what any mean but anyway eg
> Ise=6.734 in Fairchild yet Ise not exist in ltspice model. Is=6.734f
> in Fairchild yet Is=1E-14 in ltspice.
>
> If I get model to data sheet how to make into ltspice model?
>
> Spice model for MPSA42 from Fairchild is this
>
> NPN (Is=34.9f Xti=3 Eg=1.11 Vaf=100 Bf=2.65K Ne=1.708 Ise=16.32p
> Ikf=23.79m Xtb=1.5 Br=9.769 Nc=2 Isc=0 Ikr=0 Rc=7 Cjc=14.23p Mjc=.5489
> Vjc=.75 Fc=.5 Cje=49.62p Mje=.4136 Vje=.75 Tr=934.3p Tf=1.69n Itf=5
> Vtf=20 Xtf=150 Rb=10)
>
> How to make into ltspice model?
>
> How it works?
>
> P.
>

For the same device, the numbers vary a bit from maker to maker.
You'll usually get a bit more accurate results using the maker's models.
LTspice seems to have a list of default numbers that will be inserted if
your model does not supply that particular parameter.

To make your new device part of the normal component selection list when you
run LTspice you need to edit a particular LTspice model file.

The MPSA42 model text needs adding to the file LTspice/LIB/CMP/
"standard.bjt". This is the store for all the PNP NPN transistors. Open it
using 'Notepad', select and 'copy' the model text (I usually do this from
the manufacturers web site) and paste onto the bottom of the list. If more
than one line add a "+" at each new line start.
Then add " mfg=Fairchild" and " Ic rating =123ma" (say).
Philips and Fairchild models seem to correspond well with the real devices.

Run LTspice and your added model will turn up as a normal component.
john

--
Posted via a free Usenet account from http://www.teranews.com
     
 楼主| 发表于 2011-7-30 03:33:00 |
回复 1# e3po


    本例 (1500MHZ 振荡器 ) 就用了 NEC 的 2SC3357  自定义模型



   

1500MHZ_osc.gif
     
 楼主| 发表于 2011-10-22 03:53:48 |
久不看书, 自己都要忘记了
发表于 2012-2-1 23:15:50 |
顶一个
     
发表于 2012-2-21 13:30:36 |
顶一下
     
发表于 2012-2-21 19:35:38 |
也想学ltspice,还没开始
     
 楼主| 发表于 2012-3-17 06:05:56 |
本帖最后由 e3po 于 2012-3-16 14:48 编辑

       又忘记了,  回来复习。


The MPSA42 model text needs adding to the file LTspice/LIB/CMP/
"standard.bjt". This is the store for all the PNP NPN transistors. Open it
using 'Notepad', select and 'copy' the model text (I usually do this from
the manufacturers web site) and paste onto the bottom of the list. If more
than one line add a "+" at each new line start.
Then add " mfg=Fairchild" and " Ic rating =123ma" (say).
Philips and Fairchild models seem to correspond well with the real devices.

Run LTspice and your added model will turn up as a normal component.




自己修改 : standard-bjt.rar (3.74 KB, 下载次数: 1168)

LTspice/LIB/CMP/"standard.bjt"


2sc3357.png


     
 楼主| 发表于 2012-3-28 14:29:16 |
本帖最后由 e3po 于 2012-3-27 23:32 编辑

BJT

Model parameters

Spice Gummel–Poon model parameters
-------------------------------------------------------------------------------------------------------
#         Name         PropertyModeled         Parameter                     Units         DefaultValue


1         IS         current         transport saturation current         A         1.00E-016
2         BF         current         ideal max forward beta         -         100
3         NF         current         forward current emission coefficient         -         1
4         VAF         current         forward Early voltage         V         inf
5         IKF         current         corner for forward beta high current roll-off         A         inf
6         ISE         current         B-E leakage saturation current         A         0
7         NE         current         B-E leakage emission coefficient         -         1.5
8         BR         current         ideal max reverse beta         -         1
9         NR         current         reverse current emission coefficient         -         1
10         VAR         current         reverse Early voltage         V         inf
11         IKR         current         corner for reverse beta high current roll-off         A         inf
12         ISC         current         B-C leakage saturation current         A         0
13         NC         current         B-C leakage emission coefficient         -         2
14         RB         resistance         zero-bias base resistance         ohms         0
15         IRB         resistance         current where base resistance falls half-way to its minimum         A         inf
16         RBM         resistance         minimum base resistance at high currents         ohms         RB
17         RE         resistance         emitter resistance         ohms         0
18         RC         resistance         collector resistance         ohms         0
19         CJE         capacitance         B-E zero-bias depletion capacitance         F         0
20         VJE         capacitance         B-E built-in potential         V         0.75
21         MJE         capacitance         B-E junction exponential factor         -         0.33
22         TF         capacitance         ideal forward transit time         s         0
23         XTF         capacitance         coefficient for bias dependence of TF         -         0
24         VTF         capacitance         voltage describing VBC dependence of TF         V         inf
25         ITF         capacitance         high-current parameter for effect on TF         A         0
26         PTF                 excess phase at freq=1.0/(TF*2PI) Hz         deg         0
27         CJC         capacitance         B-C zero-bias depletion capacitance         F         0
28         VJC         capacitance         B-C built-in potential         V         0.75
29         MJC         capacitance         B-C junction exponential factor         -         0.33
30         XCJC         capacitance         fraction of B-C depletion capacitance connected to internal base node         -         1
31         TR         capacitance         ideal reverse transit time         s         0
32         CJS         capacitance         zero-bias collector-substrate capacitance         F         0
33         VJS         capacitance         substrate junction built-in potential         V         0.75
34         MJS         capacitance         substrate junction exponential factor         -         0
35         XTB                 forward and reverse beta temperature exponent         -         0
36         EG                 energy gap for temperature effect of IS         eV         1.1
37         XTI                 temperature exponent for effect of IS         -         3
38         KF                 flicker-noise coefficient         -         0
39         AF                 flicker-noise exponent         -         1
40         FC                 coefficient for forward-bias depletion capacitance formula         -         0.5
41         TNOM                 parameter measurement temperature         deg.C         27


--------------------------------------------------------------------------------------------------------------



GP模型是1970年由H.K.Gummel和H.C.Poon提出的。
GP模型对EM2模型在以下几方面作了改进:
1.直流特性:反映了集电结上电压的变化引起有效基区宽度变
化的基区宽度调制效应,改善了输出电导、电流增益和特征
频率。反映了共射极电流放大倍数β随电流和电压的变化。
2.交流特性:考虑了正向渡越时间τF随集电极电流IC的变化,
解决了在大注入条件下由于基区展宽效应使特征频率fT和IC成
反比的特性。
3.考虑了大注入效应,改善了高电平下的伏安特性。
4.考虑了模型参数和温度的关系。
5.根据横向和纵向双极晶体管的不同,考虑了外延层电荷存储
引起的准饱和效应。


     
 楼主| 发表于 2012-4-12 06:26:50 |



.MODEL 2SC3357 NPN (IS=684.2e-18 BF=161.1 NF=1.0 VAF=51 IKF=574.6e-3 BR=10.71 NR=1.0 VAR=2.1 IKR=28.05e-3 ISE=1.0e-18 NE=1.193 ISC=6.211e-18 NC=1.1 RB=3.0 IRB=75.9e-5 RBM=1.0 RE=2.67 RC=3.5 CJE=1.847e-12 VJE=1.014 MJE=464.8e-3 CJC=1.086e-12 VJC=617.4e-3 MJC=353.8e-3 XCJC=0.1 CJS=0 VJS=0.75 MJS=0 FC=0.50 TF=23e-12 XTF=0.39 VTF=0.668 ITF=0.06 TR=0 PTF=20 EG=1.11 XTI=3.0 XTB=0 Vceo=12 Icrating=100m mfg=NEC)
  1. .MODEL 2SC3357 NPN (IS=684.2e-18 BF=161.1 NF=1.0 VAF=51 IKF=574.6e-3 BR=10.71 NR=1.0 VAR=2.1 IKR=28.05e-3 ISE=1.0e-18 NE=1.193 ISC=6.211e-18 NC=1.1 RB=3.0 IRB=75.9e-5 RBM=1.0 RE=2.67 RC=3.5 CJE=1.847e-12 VJE=1.014 MJE=464.8e-3 CJC=1.086e-12 VJC=617.4e-3 MJC=353.8e-3 XCJC=0.1 CJS=0 VJS=0.75 MJS=0 FC=0.50 TF=23e-12 XTF=0.39 VTF=0.668 ITF=0.06 TR=0 PTF=20 EG=1.11 XTI=3.0 XTB=0 Vceo=12 Icrating=100m mfg=NEC)
复制代码
     
 楼主| 发表于 2012-4-12 09:16:46 |
http://www.diyaudio.com/wiki/Models_and_Modeling_Aids


http://www.diyaudio.com/wiki/Transistors
  1. Here are the user models I've collected. I only want to add user created models here; this way, the models have been scrutinized and are more likely to be close in performance to the actual devices.

  2. *Models from Andy_C, probably very accurate:

  3. .MODEL mjl3281a_x npn IS=9.8145e-12 BF=438.0 NF=1.00 VAF=38 IKF=19.0 ISE=1.0e-12 NE=1.1237388682 BR=4.98985 NR=1.09511 VAR=4.32026 IKR=4.37516 ISC=3.25e-13 NC=3.96875 RB=3.997 RE=0.00 RC=0.06 XTB=0.115253 XTI=1.03146 EG=1.11986 CJE=1.144e-08 VJE=0.468574 MJE=0.34957 TF=2.6769e-9 XTF=7500 VTF=3.0 ITF=1000 CJC=1.093685e-9 VJC=0.623643 MJC=0.482111 XCJC=0.959922 FC=0.1 CJS=0 VJS=0.75 MJS=0.5 TR=1e-07 PTF=0 KF=0 AF=1 Vceo=200 Icrating=15 mfg=OnSemiconductor
  4. .MODEL mjl1302a_x pnp IS=9.8145e-12 BF=122.925 NF=1.00 VAF=40 IKF=19 ISE=9.18577762370362E-07 NE=5.0 BR=4.98985 NR=1.09511 VAR=4.32026 IKR=4.37516 ISC=3.25e-13 NC=3.96875 RB=3.30 RE=0.00 RC=0.06 XTB=0.115253 XTI=1.03146 EG=1.11986 CJE=1.561e-08 VJE=0.781803 MJE=0.433868 TF=3.257e-9 XTF=1000 VTF=2.0 ITF=260 CJC=2.346838e-9 VJC=0.27876 MJC=0.411324 XCJC=0.959922 FC=0.1 CJS=0 VJS=0.75 MJS=0.5 TR=1e-07 PTF=0 KF=0 AF=1 Vceo=200 Icrating=15 mfg=OnSemiconductor
  5. .MODEL Q2SA1837_x PNP ( IS=2.39372559E-10 NF=1.304015937 BF=300 VAF=273 IKF=2.087725944 NK=0.94719458 ISE=1.46829699E-11 NE=1.526663542 BR=4 NR=1 VAR=20 IKR=1.05 RE=0 RB=1.8 RC=1.65 CJE=4.7407E-10 VJE=1.1 MJE=0.5 CJC=8.6700E-11 VJC=0.3 MJC=0.3 TF=1.642191E-09 FC=0.5 ITF=1.076260106 XTF=5.868994022 TR=1.38U)
  6. .MODEL Q2SC4793_x NPN ( IS=1.8E-09 NF=1.43 BF=146.38 VAF=273 IKF=2.6 NK=0.95 ISE=6.286997E-10 NE=2.223629 BR=4 NR=1 VAR=20 IKR=1.05 RE=0 RB=1.7 RC=1.25 CJE=5.96964E-10 VJE=1.1 MJE=0.5 CJC=5.78E-11 VJC=0.3 MJC=0.3 TF=1.22678E-09 FC=0.5 ITF=10 XTF=99.52253015 TR=983N)
  7. .MODEL BAV21_x d
  8. +IS=7.294112E-09 RS=0.706 N=1.904350
  9. +BV=250 IBV=100e-6 NBV=145.396351
  10. +VJ=0.666016 M=0.084417
  11. Typical capacitance and reverse recovery time
  12. Trr = 26ns
  13. +CJO=1.172445e-12 TT=36.5e-9
  14. Worst case capacitance and reverse recovery time
  15. Trr = 50 ns
  16. *+CJO=5.0e-12 TT=68.1e-9

  17. *Models from Syn08:

  18. .MODEL Q2SA1407_syn08 PNP ( IS=15.2F NF=1 BF=416 VAF=254 IKF=90M ISE=3.66P NE=2 BR=4 NR=1 VAR=20 IKR=.135 RE=7.63 RB=30.5 RC=3.05 XTB=1.5 CJE=22P VJE=1.1 MJE=.5 CJC=7.1P VJC=.3 MJC=.3 TF=397P TR=276N)
  19. .MODEL Q2SC3601_syn08 NPN ( IS=15.2F NF=1 BF=416 VAF=254 IKF=90M ISE=3.66P NE=2 BR=4 NR=1 VAR=20 IKR=.135 RE=5.63 RB=22.5 RC=2.25 XTB=1.5 CJE=18.3P VJE=1.1 MJE=.5 CJC=5.91P VJC=.3 MJC=.3 TF=397P TR=276N)
  20. .MODEL Q2SA1930_syn08 PNP( IS=10.000E-15 BF=210 VAF=78 IKF=10.000E-3 XTB=1.5 BR=.1001 VAR=100 IKR=10.000E-3 ISC=10.000E-15 CJE=3.252E-12 CJC=63.196E-12 MJC=.33333 TF=83.239E-12 XTF=10 VTF=10 ITF=1)
  21. .MODEL Q2SC5171_syn08 NPN( IS=10.000E-15 BF=210 VAF=100 IKF=10.000E-3 XTB=1.5 BR=.1001 VAR=100 IKR=10.000E-3 ISC=10.000E-15 CJE=2.0000E-12 CJC=38.866E-12 MJC=.33333 TF=83.239E-12 XTF=10 VTF=10 ITF=1)

  22. *Models from Christer, very simplistic, give very good performance in simulator (perhaps better than the actual devices?). Christer himself did not guarantee the accuracy of these.

  23. .model 2SD669_Christer NPN (IS=5p NF=1 BF=250 ISE=5p NE=1.5 IKF=3 VAF=150 RB=1 RC=0.25 RE=0.25 TF=1.14ns CJC=50p )
  24. .model 2SB649_Christer PNP (IS=5p NF=1 BF=250 ISE=10p NE=1.5 IKF=3 VAF=75 RB=1 RC=0.25 RE=0.25 TF=1.14ns CJC=50p )

  25. Keantoken modified these models of the 2N5769/5771 complementary HF switching transistors. The models are very accurate regarding DC characteristics but the AC modeling wasn't modified from the original model. Here is the thread: http://www.diyaudio.com/forums/softw...ity-check.html

  26. .model 2N5769_k NPN(Is=1.2f Xti=3 Eg=1.16 Vaf=100 Bf=88 Rb=45 Ikf=200m Ise=33f Ne=1.7 Xtb=1.7 Br=1.365 Nc=2 Isc=0 Ikr=0 Rc=.6 Cjc=2.83p Mjc=86.19m Vjc=.75 Fc=.5 Cje=4.5p Mje=.2418 Vje=.75 Tr=1.073u Tf=227.6p Itf=.3 Vtf=4 Xtf=4 Vceo=15 Icrating=200m mfg=Fairchild)
  27. .model 2N5771_k PNP(Is=1.2f Xti=3 Eg=1.16 Vaf=100 Bf=125 Rb=45 Ikf=100m Ise=62f Ne=1.7 Xtb=1.7 Br=1.365 Nc=2 Isc=0 Ikr=0 Rc=3.75 Cjc=2.77p Mjc=.1416 Vjc=.75 Fc=.5 Cje=2.65p Mje=.3083 Vje=.75 Tr=4.033n Tf=118.5p Itf=.5 Vtf=3 Xtf=6 Rb=10 Vceo=15 Icrating=200m mfg=Fairchild)

  28. Also by Keantoken, but not as accurate as the 5769/5771 models. Hfe is optimistic.

  29. .model BC547C_k NPN(Is=32.53f Xti=3 Eg=1.11 Vaf=100 Bf=620 Ise=299f
  30. + Ne=1.583 Ikf=.7695 Nk=.5467 Xtb=1.5 Br=6.313 Isc=138f Nc=2.053
  31. + Ikr=.187 Rc=.4216 Cjc=5.25p Mjc=.3147 Vjc=.5697 Fc=.5 Cje=11.5p
  32. + Mje=.3333 Vje=.5 Tr=10n Tf=410.7p Itf=2.204 Xtf=66.65 Vtf=10)
  33. .model BC557C_k PNP(Is=32.53f Xti=3 Eg=1.11 Vaf=100 Bf=580 Ise=318.3f
  34. + Ne=1.542 Ikf=.6049 Nk=.6086 Xtb=1.5 Br=6.501 Isc=179.5f Nc=1.832
  35. + Ikr=.1402 Rc=.4026 Cjc=9.81p Fc=.5 Cje=30p Mjc=.3333 Vjc=.5
  36. + Mje=.3333 Vje=.5 Tr=10n Tf=516.2p Itf=13.36 Xtf=1.289K Vtf=10)
复制代码
     
 楼主| 发表于 2012-4-18 16:29:01 |
     
 楼主| 发表于 2014-12-26 00:00:45 |

补充一些说明文档


BJTm.png

JFETm.png


MOSfet.png
发表于 2017-6-1 11:05:13 |

版主, 请问(KT88)超线性推挽变压器如何建模? 可否举个例算一算。。。。谢谢。。

小黑屋|手机版|矿石收音机 ( 蒙ICP备05000029号-1 )

蒙公网安备 15040402000005号

GMT+8, 2025-4-25 17:25

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表